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SUMMARY
Environmental change, coupled with alteration in human lifestyles, is profoundly impacting the microbial
communities critical to the health of the Earth and its inhabitants. To identify bacteria and fungi that are resis-
tant and susceptible to habitat change, we analyze thousands of genera detected in 1,580 host, soil, and
aquatic samples. This large-scale analysis identifies 48 bacterial and 4 fungal genera that are abundant
across the three biomes, demonstrating fitness in diverse environmental conditions. Samples containing
these generalists have significantly higher alpha diversity. These generalists play a significant role in shaping
cross-kingdom community structure, boasting larger genomeswithmore secondarymetabolism and antimi-
crobial resistance genes. Conversely, 30 bacterial and 19 fungal genera are only found in a single habitat, sug-
gesting a limited ability to adapt to different and changing environments. These findings contribute to our
understanding of microbial niche breadth and its consequences for global biodiversity loss.
INTRODUCTION

Environments, plants, and animals are colonized with commu-

nities of microbial organisms, termed the microbiome, which

play critical roles in the function and health of their hosts and

habitats. While understudied relative to bacteria, fungi play crit-

ical roles in environmental and host microbial communities,

including important roles in carbon cycling and beneficial symbi-

oses with plant and hosts.1–3 Importantly, environmental change

and alterations in host lifestyle are profoundly affecting microbial

consortia.Westernized diets low in fiber and rich in saturated fats

and sugars have decreased the abundance of beneficial mi-

crobes and been linked with myriad health conditions, including

obesity, type 2 diabetes, and inflammatory bowel disease.4–7

Changes in marine environments due to climate change have

induced major shifts in marine food webs, primary productivity,

and carbon export.8–11 Additionally, anthropogenic climate

change is resulting in net carbon loss in soil and changes in mi-

crobial community composition.12

Ecological theory predicts that generalists, or organisms that

are fit across a wider range of conditions, will be more resilient

to changing environmental conditions.13–15 Conversely, spe-
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cialists, or organisms that are adapted to thrive in very specific

environments, will be less able to withstand perturbations to

their habitat. As the Earth and its inhabitants are experiencing

unprecedented changes to their health and habitats, it is crucial

to understand the capacity of individual microbial taxa to adapt

to changing environmental conditions. Those unable to change

are susceptible to biodiversity loss, while generalists that

can grow in a wider range of conditionsmay survive and flourish

with unknown consequences. Pan-habitat meta-analyses of

bacterial community data have identified ecological and

evolutionary features of bacterial generalists and specialists,

including differences in abundance and speciation rates.16,17

However, the corresponding studies examining these features

in fungi have only been performed on distinct habitats or taxo-

nomic groups.18–20 Moreover, bacterial and fungal kingdoms

have not been considered together at the global scale despite

substantial evidence from individual settings that bacteria and

fungi commonly interact with each other with pronounced

consequences.21,22

To this end, we performed a large-scale analysis of community

sequencing datasets from host, soil, and aquatic environments

with paired bacterial and fungal characterization to shed light
April 23, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
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on the ecological properties of the genera present and their pu-

tative resilience to change. We focused on three aspects: (1) the

identification of bacteria and fungi that occurred in diverse envi-

ronments (generalists) or were limited to highly specific environ-

ments (specialists); (2) the relative abundance of bacterial and

fungal generalists and specialists as a marker for their fitness

and competitive colonization potential; and (3) whether their

presence in a habitat was associated with global changes in in-

ter- and cross-kingdom population structure.

RESULTS

Environmental specificity of bacterial and fungal
communities
For a global survey of bacteria and fungi acrossmicrobial commu-

nities, we analyzed paired 16S and internal transcribed spacer

(ITS) rRNAampliconsequencedata from1,580samplesdeposited

in public databases. Samples were collected from Europe, Asia,

and the Americas between 2010 and 2018 (Figure 1A). For

cross-biome comparisons, samples were classified as aquatic,

host, or soil environmentsbasedon thehabitat theywerecollected

from. This broad grouping is supported by principal coordinate

analysis based on Bray-Curtis dissimilarity showing that samples

from each environment largely cluster with each other and are

distinct from the other environments (Figure 1B)—a finding

mirrored by a recent study of 22,700 bacterial microbiomes.16

Of the 1,580 samples that we analyzed, 871 originated from

soils, 494 from hosts (including mammalian, non-mammalian,

and plant hosts), and 215 from aquatic environments. The hab-

itats that contributed the largest number of samples for each

environment were temperate (n = 498) and conifer forests

(n = 147) for the soil, gut (n = 287) and skin (n = 68) for the hosts,

and large lakes (n = 87) and other freshwater (n = 71) for the

aquatic environments (see Data S1 for details of all projects).

Due to the limited availability of fungal community data inmarine

samples, this large habitat was only represented with 10 sam-

ples. Taxonomic profiling of bacterial and fungal communities

was performed using the SILVA and UNITE databases, respec-

tively. Rarefaction curves of each habitat indicated that most

projects adequately captured the diversity of both the bacterial

and fungal communities (Figure 1C). In total, 2,977 bacterial and

1,740 fungal genera were detected across all samples (Fig-

ure 1D). We next examined the overlap of genera between envi-

ronments, where a genus was considered shared if it was

detected in at least one habitat in each of the three different en-

vironments (host, aquatic, and soil). For bacteria, soil and

aquatic environments had the highest number of shared genera

(n = 1,662), followed by host-soil (n = 1,483) and host-aquatic

(n = 1,226). The pattern was different for fungi, with host-soil

sharing the most (n = 884), followed by aquatic-soil (n = 205)

and host-aquatic (n = 189). These trends remained after control-

ling for the different number of samples across the three envi-

ronments in 842 and 998 out of 1,000 random downsampled

subsets for bacteria and fungi, respectively. Finally, we also

confirmed that a similar degree of overlap between the environ-

ments was observed for different 16S and ITS amplicons, as

well as significant correlations in the relative abundances of in-

dividual genera (Figures S1A–S1C).
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While 40% of the total bacterial genera were found in all three

environments, the percentage dropped to only 11% for fungal

genera, indicating a higher degree of environmental specificity

(Figures 1E and 1F). The most prevalent higher-order taxo-

nomic ranks that were detected in all three environments

were Proteobacteria, followed closely by Firmicutes for bacteria

and Ascomycota for fungi. For both bacteria and fungi, soil was

the environment with the highest percentage of uniquely de-

tected genera (i.e., genera not detected in any sample from

host or aquatic origin) with 23% and 38%, respectively, for

each kingdom. While aquatic-specific bacteria accounted for

7% of the total number of detected genera, the percentage of

unique fungi in aquatic samples was only 2% (Figures 1E and

1F). The opposite trend was observed for host-associated mi-

crobes, with only 3% and 8% of unique bacteria and fungi,

respectively, in this environment.

We subsequently compared the relative abundance of genera

that were found in all environments or were uniquely detected

in soil-, host-, or aquatic-associated environments. Bacterial

genera detected in all three environments were significantly

more abundant (Wilcoxon rank-sum test, p < 0.001) than genera

uniquely detected in one of the environments (Figure 1G). A

similar pattern was observed with fungi. However, a notable

exception was the relatively high abundance of fungi that

were uniquely detected in aquatic samples. Genera of aquatic

fungi were more abundant than either common genera and

uniquely detected in soil- or host-associated environments (Fig-

ure 1H). This observation was also robust across the different

16S and ITS regions used in the dataset (Figure S1D). Taken

together, we find that soil bacteria and fungi show a higher

degree of biome specificity compared to aquatic and host envi-

ronments and that genera detected in all three environments

were also more abundant than those only detected in only

one environment.

Bacterial and fungal generalists aremore abundant than
specialists and have distinct genomic features
Generalists and specialists play important yet distinct roles in

ecosystems. However, objectively identifying them has proven

challenging. To define multi-kingdom generalists and special-

ists, we set the following criteria: generalists are genera found

with high prevalence (>40%) in at least one habitat (e.g., gut,

boreal forest) from each of the three environments (host,

aquatic, soil), where prevalence was defined as a relative abun-

dance above 0.01% in >1 sample from the habitat. Conversely,

specialists were genera with a high prevalence (>40%) in one

habitat and low prevalence (<5%) in every other. Using this

approach, we detected 48 bacterial generalists and 30 special-

ists (Table S1). To ensure that the generalists identified were

legitimately present in the microbial community and not the

result of reagent or sequencing contamination, we performed

decontamination on low-biomass projects, including all aquatic

projects and low-biomass host sites like the lung (see STAR

Methods for details). There were no significant differences in

the relative abundance of generalists before and after sequence

data decontamination (Figure S2). As an additional control, we

compared the DNA extraction methods/kits used, any DNA

purification kits utilized, the library preparation kit, and the
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Figure 1. A global analysis of microbial communities reveals differences in environmental specificities between bacteria and fungi

(A) Distribution of samples used in this study (n = 1,580) by geographic location.

(B) Bray-Curtis dissimilarity between samples colored by environment. Crosshatches represent the mean ± SD for each environment. Significance calculated by

PERMANOVA.

(C) Rarefaction curves of Shannon alpha diversity for each study demonstrate sufficient sampling depth. Curves are shown as LOESS regressions from 10

independent sampling trials at 10 given sampling subset sizes. Lines are colored by environment and are surrounded by ribbons indicating the 95% confidence

interval across the trails.

(D) Intersection of bacterial and fungal genera found in at least one sample in each environment as Venn diagrams.

(E and F) Percentage of genera found in all three or only one environment.

(G and H) Abundance comparisons of common and unique genera by total sum scaling (TSS). A genus was considered present in a sample using a threshold of

abundance >0.01%. Significance was determined by Wilcoxon rank-sum test; ***p < 0.001.
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sequencing facility of the projects included in our study.

We could not find appreciable overlap among the project

studies that would imply that the generalists identified were

the result of contamination via common methodology or re-

agents (Data S2).

To confirm our definition of generalists and specialists, we

calculated Levins’ niche breadth indices (Bn), which measure

taxon distribution across environments and where higher values

indicate even distribution across environments.23 Generalists

showed significantly higher Bn values than specialists (Wilcoxon

rank-sum test, p < 0.001; Figure S3A). All specialists and all gen-

eralists, with the exception of the Christensenellaceae R7 group,

were above the detection limit and had a significant Bn after

Benjamini-Hochberg adjustment.23 As our criteria for defining

generalists and specialists were reliant on human-defined biome

annotations, we further validated our approach by comparing it

to the recently developed social niche breadth (SNB) score.16

By comparing the similarity or diversity of microbial communities

where a given genus occurs, SNB provides a data-driven score

independent of biome annotations based on an independent da-

taset of over 22,500 bacterial microbiomes.16 Indeed, the gener-

alists identified in our study had significantly higher SNB scores

than the bacterial specialists we identified (Wilcoxon rank-sum

test, p < 0.001; Figure S3B).

We observedmultiple phylogenetic origins for both generalists

or specialists (chi-squared test, p > 0.05), indicating that their

roles as generalists and specialists evolved independently (Fig-

ure S4). Each of the top five bacterial generalists were detected

in more than 50% of the 1,580 samples. Among them, the most

prevalent was Pseudomonas, which was detected in 52%, 70%,

and 89% of host, soil, and aquatic samples, respectively, fol-

lowed by Bacillus (33%, 71%, 35%) and Bradyrhizobium (17%,

73%, 35%). The most extreme bacterial specialists came from

the soil. While Gryllotalpicola and Anaerovibrio were found in

>91% of biochar samples, the prevalence dropped to 0.1% on

average for non-soil environments (Table S1). Specialists were

also found in host- and aquatic-associated environments. For

example, Acetatifactor was found in 80% of samples from the

murine gut but had a prevalence of <3% in all other habitats.

The genus Leptospirawas found in 83% of samples of the Cuya-

hoga River but had a prevalence less than 2% in all other habi-

tats. Interestingly, when comparing the relative abundance of

generalists and specialists, we observed that both bacterial

and fungal generalists had a significantly higher relative abun-

dance (Figure 2A; Wilcoxon rank-sum test, p < 0.001). This

pattern remained when we used stricter and looser thresholds

to define generalists and specialists (Figure S5). This finding con-

firms the pattern observed above (Figures 1G and 1H), suggest-

ing that independently of how groups are defined, genera that

can colonize diverse environments are usually able to outcom-

pete habitat-specific genera.

When looking at the fungal kingdom, the number of general-

ists was much lower, and only Aspergillus, Malassezia, Aureo-

basidium, and Cortinarius satisfied the criteria of a generalist

(Table S1). Among these, Aspergillus had the highest overall

prevalence among all samples with 38%, 52%, and 12% in

the host, soil, and aquatic samples, respectively. From the 19

fungal specialists, Chrysanthotrichum and Mycocentrospora
4 Cell Reports 43, 114046, April 23, 2024
were the most habitat specific, with prevalences of 68% and

48% in temperate and conifer forests, respectively, but a

mean prevalence of %0.1% in all other habitats. Only two of

the 19 fungal specialists (11%) originated from outside soil en-

vironments (Vuilleminia and Seimatosporium from plants). As

with bacterial genera, the relative abundance of fungal general-

ists was significantly higher than that of fungal specialists (Fig-

ure 2A; Wilcoxon rank-sum test, p < 0.001).

To gain insight into how generalists achieve high relative abun-

dance in diverse environments,weanalyzed thegenomesof gen-

eralists and specialist genera available on NCBI (see STAR

Methods for details on genome selection). For bacteria, when

analyzing the genomes of 2,328 generalists and 471 specialists

(Data S3), the generalists had significantly larger genomes as

measured by the number of coding sequences (CDSs), with a

meanof 4,671CDSs for generalists and3,189 for specialists (per-

mutation test, p < 0.001; Data S3). This trend remained after

controlling for genome length, with generalists having a mean

of 925 CDS/Mb genome compared to 921 CDS/Mb for special-

ists (permutation test, p < 0.001). As secondary metabolism

genes are often used by microbes during competition for re-

sources and as chemical warfare in crowded environments, we

examined the genomes of generalists and specialists for the

presence of biosynthetic gene clusters (BCGs). Strikingly, the

genomes of bacterial generalists encoded significantly more

BCGs with an average of 7.4 BGCs and 1.4 BGCs/Mb genome

compared to 2.7 BGCs and 1.2 BGCs/Mb for specialists (Fig-

ure 2C; permutation test,p<0.001). Further differentiating bacte-

rial generalists, they also contained significantly more antimicro-

bial resistance (AMR) genes, with an average of 4.2 AMR genes

and 0.39 AMR genes/Mb genome compared to 1.0 AMR genes

and 0.36 AMR genes/Mb for specialists (Figure 2D; permutation

test, p = 0.001). For fungi, no significant differences in either the

number ofCDSorBGCswasobserved (Figures 2Band2C), likely

due to the severe underrepresentation of publicly available fungal

specialist genomes (n = 5).

To explore intra- and inter-kingdom interaction patterns and to

gain further insight into the downstream effects of the observed

differences between generalists and specialists, we constructed

individual coabundance networks for soil, host, and aquatic en-

vironments (see STAR Methods for details). As many taxa were

not detected across all environments, networks were con-

structed only considering the 1,188 bacterial and 184 fungal

genera commonly detected in all three environments. Despite

starting with the same genera, the topological characteristics

of the networks for each environment were highly distinct, as

measured by significant differences in betweenness and Klein-

berg’s hub node centrality scores (Wilcoxon test, p < 0.001; Fig-

ure S6). In spite of the differences in topology, we could still

compile subnetworks of inter- and intra-kingdom correlations

found jointly among host-soil, host-aquatic, and/or soil-aquatic

environments. Strikingly, 45 of the 48 bacterial generalists and

all 4 fungal generalists were part of those subnetworks, which

are characterized by a higher number of positive than negative

edges (Figure 2E). The ratio of positive to negative edges was

higher in correlations involving a generalist (2.5) compared to

all other edges (2.2). When we looked for interactions between

genera found in all three environments, we identified 43 such



A B

C D

E

Figure 2. Generalists are more abundant and bacterial generalists have larger genomes with more biosynthetic gene clusters (BCGs) and

antimicrobial resistance genes

(A) Relative abundances of bacterial and fungal generalists and specialists. Values were averaged by project to account for different cohort sizes. Statistical

significance was calculated using Wilcox rank-sum test (****p < 0.0001).

(B and C) Number of coding sequences (CDSs) (B) and BCGs (C) in the genomes of generalists and specialists normalized to their genome length in bp. Data are

from the genomes of 2,328 bacterial generalists, 117 fungal generalists, 471 bacterial specialists, and 5 fungal specialists. Statistical significance was calculated

by permutation test (****p < 0.0001; ns denotes p > 0.05).

(D) Number of antimicrobial resistance (AMR) in the genomes of bacterial specialists normalized by genome length. Statistical significance calculated by Per-

mutation test (****p < 0.0001).

(E) Networks of genera found in all three environments and significantly coabundant in the majority of environments (SparCC false discovery rate [FDR] p < 0.05, |

r| > 0.2).
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Figure 3. Generalists significantly impact

diversity and cross-kingdom variation

(A and B) Shannon and Chao1 alpha diversity were

calculated for bacteria (A) and fungi (B). Samples

were grouped by whether they contained any

generalist (genera with >40%prevalence in at least

one habitat from every environment; abundance

>0.01%; n = 1,500 for bacteria, n = 1,125 for fungi)

or do not contain any generalist (n= 91 for bacteria;

n = 466 for fungi). Significance bars indicate per-

mutation test compared to samples without

random taxa instead of generalists (*q < 0.05,

**q < 0.01, and ***q < 0.001).

(C and D) Bacterial and fungal Bray-Curtis dis-

similarities constrained by explanatory genus

abundances of the other kingdom using distance-

based redundancy analysis (dbRDA). (C) Explain-

ing genera were selected using a feedforward

approach. Significance determined by PERMA-

NOVA. Effect size of most explanatory taxa is

shown in (D) by multivariate model (as displayed in

C) or univariate model containing only the taxon of

interest. Generalists are indicated with blue text.

Stars indicate significance by ANOVA (**p < 0.01).
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edges that all represented positive interactions between bacteria

and included 21 generalists. Together, these findings suggest

that the success of generalists in colonizing diverse environ-

ments and achieving high relative abundances may be attribut-

able to their ability to carve out a niche for themselves using sec-

ondary metabolism and AMR genes and by eliciting positive

interactions with other highly prevalent genera.

Bacterial generalists exert a strong influence on the
intra- and inter-kingdom community structure
We subsequently explored whether the presence of generalists

and specialists had an impact on the diversity of a community.
6 Cell Reports 43, 114046, April 23, 2024
Interestingly, alpha diversity, as measured

as Chao 1 and Shannon, was significantly

lower in samples where no generalist was

detected compared to samples with gen-

eralists present for both bacterial (Fig-

ure 3A) and fungal (Figure 3B) commu-

nities (permutation test of samples

lacking any of the N generalists compared

with samples lacking any N random

taxa, 1 3 104 permutations, p < 0.03).

Conversely, the impact of specialists on

alpha diversity in their specific habitat

was much less profound and varied by

habitat without a clear trend (Figure S7).

We subsequently shifted our focus to in-

ter-kingdom interactions, which are often

overlooked in microbial ecology studies,

and examined bacterial generalists for a

role in shaping themycobiome community

structure, and vice versa. As expected,

we observed a significant separation be-

tween the soil, host, and aquatic micro-
and mycobiome beta diversity by Bray-Curtis dissimilarity (Fig-

ure 3C; PERMANOVA, p < 0.001 for both bacteria and fungi).

Constrained ordination revealed a significant, linear relationship

between bacterial Bray-Curtis dissimilarity and fungal community

composition, and vice versa (distance-based redundancy anal-

ysis [dbRDA], ANOVA p < 0.04 for all explanatory genera of the

other kingdom in a multivariate model). Bacterial genera could

explain an extensive part of the mycobiome variation observed

in the three environments with a partial R2 of 25% by dbRDA.

Of the bacterial genera, Conexibacter, Bacillus, and Lysobacter

had the highest explanatory power on mycobiome variation (Fig-

ure 3D). Interestingly, six out of the top ten explanatory bacterial
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genera in the dbRDA were generalists. Similarly, fungal genera

explained 26% of the microbiome variation between host, soil,

and aquatic samples, with Mortierella, Trichocladium, and

Candida having the highest explanatory power (Figure 3D).

Among the top ten explanatory genera was one of the four fungal

generalists—Malassezia. Altogether, our analysis indicates that

bacterial and fungal generalists profoundly impact microbial

communities by contributing positively to the taxonomic (alpha)

diversity of their kingdom—an ecological characteristic often

associated with healthy environments—and they can also

contribute to shaping cross-kingdom microbial structures.

DISCUSSION

Recent global changes are profoundly affecting the health of our

planet and its inhabitants.24–26 As environmental and host-asso-

ciated microbial communities are increasingly exposed to

changing habitats, we still lack knowledge about the capacity

of millions of bacterial and fungal species to cope with these

shifts. With this in mind, we performed a large-scale global sur-

vey of host, aquatic, and soil microbiomes to reveal ecological

and genomic properties of bacterial and fungal genera that

may promote or limit their establishment in new environments

and how they contribute to the richness and diversity of an envi-

ronment. Analysis of 1,580 paired host, soil, and aquatic micro-

and mycobiomes identified �70 specialist genera whose limited

distribution suggests they may struggle in different or changing

habitats and identify �50 widespread genera with high relative

abundance across all environments examined, suggesting an

ability to thrive across diverse habitats. Through this analysis,

we also identified genomic and ecological properties associated

with generalists, including their contributions to alpha diversity,

and structuring the beta diversity in the other kingdom. General-

ists also had larger genomes with more secondary metabolism

genes, which serve as antimicrobial weapons and tools for

nutrient scavenging, microbial communication, and influencing

microbial community composition.27–29 This suggests a mecha-

nism for how generalists thrive in such diverse and often highly

competitive habitats.

While the concept of generalists and specialists is not new to

microbial ecology, it has mostly been applied in specific habi-

tats.30–34 Similarly, while studies of prokaryotic generalist and

specialist microbes have been carried out,16,17,31,35–39 they

have rarely considered eukaryotic microorganisms such as

fungi, despite the critical role fungi play in many habits.40–45

We demonstrate that both bacterial and fungal generalists share

ecological features including the ability to reach significantly

higher relative abundances than specialists and contributing

positively to the richness and diversity of their respective king-

doms. Moreover, six bacterial generalists, including Bacillus,

Lysobacter, Escherichia, and Gemmatimonas, and one fungal

generalist, Malassezia, harbor additional ecological properties

and appear to play a significant role in shaping cross-kingdom

microbial composition (Figure 3D).

These positive roles for generalists are somewhat at odds with

previous work showing that generalists negatively impact eco-

systems through homogenization.46–48 One possible explana-

tion is that the species- and strain-level diversity of the microbial
world is enormous compared to higher eukaryotes, where many

key studies have been conducted. The variable and pronounced

effects of strain- and species-level diversity within generalist

genera are highlighted in biocontrol agents. Strains of the gener-

alist bacteria Bacillus, Pseudomonas, and Streptomyces are

approved as biocontrol agents for soil-borne diseases in the Eu-

ropean Union (source: EUActive Substance Pesticide Database,

accessed December 2023). However, other strains of Bacillus

and Pseudomonas are pathogens of crops.

Indeed, a challenge for the future will be to move the analysis

of microbial generalists and specialists beyond taxonomic

description to understanding the functional characteristics that

distinguish them from other taxa. Our study was carried out at

the genus level due to the limitations of accurate species-level

classification of bacteria and fungi via amplicon metabarcod-

ing.49–51 For bacteria, one way forward may be deep functional

characterization at the pathway and enzyme levels using

shotgun metagenomics datasets. The functional characteriza-

tion of fungal generalists and specialists will prove to be a

much greater challenge. Their genomes are larger and more

complex and their physiology less studied. Consequently, func-

tional prediction tools and community-level modeling based on

metagenomic data for fungi lag behind those for prokaryotic

microorganisms.

Overall, the generalists and specialists identified cumulatively

account for a small fraction of the total taxonomic diversity of

each kingdom (<2.6% of total bacterial genera and <1.3% of

fungal genera). However, we find that generalism is proportion-

ally rarer in fungi, with 1.6% of bacterial genera in the dataset

meeting the definition for generalism compared to 0.2% of fungi.

This is likely influenced by the clear specialization of fungi for soil.

Current estimates suggest that 90% of the Earth’s fungal spe-

cies live in soil compared to 43% for bacterial life.52 However,

the reasons for the observed difference in specificity and gener-

alism present an intriguing question for further work. We posit

that it may be due to differences in the genome dynamics be-

tween bacteria and fungi. Bacterial genomes are more flexible

and shaped by horizontal gene transfer to a degree not seen in

fungi. Alternatively, differences in dispersal may allow for bacte-

rial genera to expand to different habitats more efficiently than

fungi. Indeed, the higher overall population size of bacteria

over fungi in soil increases the probability of their dispersal.53,54

Our finding that bacterial and fungal generalists have larger

genomes is consistent with the expectation that fitness across

diverse habitats requires a larger genomic repertoire and parallels

the results from another metastudy of bacterial community

data.17 In ourwork, wewere able to delineate someof the specific

tools used by generalists, such as the acquisition of an enrich-

ment of BCGs and antimicrobial resistance genes. However, it

is likely that other genomic factors underlie their generalism; the

relative contributions of these factors involved in inter-microbe

communication, compared to other genomic features such as

metabolic versatility, is an open question.

Finally, the observation that roughly a quarter of bacterial com-

munity composition could be explained by fungal relative abun-

dance, and vice versa, strongly emphasizes the role of the multi-

kingdom interactions in microbial communities and highlights

the amount of information potentially missed by examining only
Cell Reports 43, 114046, April 23, 2024 7
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one kingdom—an important point for future microbial commu-

nity studies. In conclusion, our global survey of bacterial-fungal

communities has generated a valuable list of genera that may

be vulnerable to biodiversity decline and even extinction under

changing environmental threats.55,56 Conversely, the generalist

bacteria and fungi identified are highly resilient against environ-

mental perturbations. However, their functional roles in ecosys-

tems, especially at the species and strain levels, will benefit from

approaches that combine large-scale computational analyses

and laboratory experiments. Together, these interdisciplinary

approaches can address the many open questions about micro-

bial niche range and its consequences for microbial extinction

and global biodiversity loss.

Limitations of the study
As this is ametastudy, there are limitations to it worthmentioning.

One is that aquatic, and particularly marine, fungi are under-

studied. This led to the exclusion of important marine habitats

due to the lack of paired, publicly available 16S-ITS samples at

the time we assembled our dataset. When we analyzed several

marine projects post hoc representing seawater, marine sedi-

ment, and coastal seagrass water,57–59 we did not identify any

bacteria that were not already classified as generalists or special-

ists compared to our original dataset. On the other hand, we iden-

tified Puccinia as a fungal marine specialist and Cladosporium,

Penicillium, and Chaetomium as fungal generalists. The ecolog-

ical and genomic features of these taxa will be interesting to

examine in the future.

While we confirmed that the rRNA subregion amplified for

microbial diversity characterization did not significantly impact

genera abundance within an environment (Figure S1), it is

possible that variation in the specific primers for the same region

still lead to the underdetection of specific taxonomic groups.

An additional caveat is that the relationship between habitats,

especially between a host and its environment, is complex. For

example, plants have selective effects on microbial diversity in

the rhizosphere.60–62 Nevertheless, in our study and other global

microbiome studies,15,16 rhizosphere microbial communities

more closely resemble soil than other host-associated habitats,

such as the host-associated microbiomes of insects, birds, and

mammals.

Rarefaction is polarizing in microbial community research.63,64

A final point to our study is that we opted not to rarefy the

sequence data analyzed in our study. We decided not to

because it could have potentially introduced new biases de-

pending on whether the rarefaction was done by BioProject,

habitat, biome, or across the entire study dataset. The analyses

that are potentially most affected by this are the diversity

analyses.
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dera, R., Villarreal Ruiz, L., Vasco-Palacios, A.M., Thu, P.Q., Suija, A.,

et al. (2014). Global diversity and geography of soil fungi. Science 346,

1256688. https://doi.org/10.1126/science.1256688.

26. Newbold, T., Hudson, L.N., Hill, S.L.L., Contu, S., Gray, C.L., Scharle-

mann, J.P.W., Börger, L., Phillips, H.R.P., Sheil, D., Lysenko, I., and Purvis,

A. (2016). Global patterns of terrestrial assemblage turnover within and

among land uses. Ecography 39, 1151–1163. https://doi.org/10.1111/

ecog.01932.

27. Keller, N.P. (2019). Fungal secondary metabolism: Regulation, function

and drug discovery. Nat. Rev. Microbiol. 17, 167–180. https://doi.org/10.

1038/s41579-018-0121-1.

28. Chevrette, M.G., Thomas, C.S., Hurley, A., Rosario-Meléndez, N., San-

karan, K., Tu, Y., Hall, A., Magesh, S., and Handelsman, J. (2022). Micro-

biome composition modulates secondary metabolism in a multispecies

bacterial community. Proc. Natl. Acad. Sci. USA 119, e2212930119.

https://doi.org/10.1073/pnas.2212930119.

29. Dahlstrom, K.M., McRose, D.L., and Newman, D.K. (2020). Keystone me-

tabolites of crop rhizosphere microbiomes. Curr. Biol. 30, R1131–R1137.

https://doi.org/10.1016/j.cub.2020.08.005.

30. Liao, J., Cao, X., Zhao, L., Wang, J., Gao, Z., Wang, M.C., and Huang, Y.

(2016). The importance of neutral and niche processes for bacterial com-

munity assembly differs between habitat generalists and specialists.

FEMS Microbiol. Ecol. 92, fiw174.

31. Liu, L., Wang, S., and Chen, J. (2021). Transformations from specialists to

generalists cause bacterial communities are more stable than micro-eu-

karyotic communities under anthropogenic activity disturbance. Sci. Total

Environ. 790, 148141.

32. Garrison, C.E., and Field, E.K. (2020). Introducing a "core steel micro-

biome" and community functional analysis associated with microbially

influenced corrosion. FEMS Microbiol. Ecol. 97, fiaa237.

33. Walter, J., and Ley, R. (2011). The human gut microbiome: ecology and

recent evolutionary changes. Annu. Rev. Microbiol. 65, 411–429.

34. Chen, Y.J., Leung, P.M., Wood, J.L., Bay, S.K., Hugenholtz, P., Kessler,

A.J., Shelley, G., Waite, D.W., Franks, A.E., Cook, P.L.M., and Greening,

C. (2021). Metabolic flexibility allows bacterial habitat generalists to

become dominant in a frequently disturbed ecosystem. ISME J. 15,

2986–3004.

35. Muller, E.E.L. (2019). Determining Microbial Niche Breadth in the Environ-

ment for Better Ecosystem Fate Predictions. mSystems 4, 000800-19–

e119. https://doi.org/10.1128/mSystems.00080-19.

36. Thomas, T., Moitinho-Silva, L., Lurgi, M., Björk, J.R., Easson, C., Astudillo-

Garcı́a, C., Olson, J.B., Erwin, P.M., López-Legentil, S., Luter, H., et al.
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ggsci RSPM (R 4.0.3) 2.9

ggsignif RSPM (R 4.0.3) 0.6.0

ggtext RSPM (R 4.0.0) 0.1.0

ggvenn git2r (https://github.com/yanlinlin82/

ggvenn@b7ff54baf91e2355432b3a9e05bef80690ace706)

0.1.9

glmnet RSPM (R 4.0.1) 4.0.2

GlobalOptions RSPM (R 4.0.3) 0.1.2

globals RSPM (R 4.0.2) 0.13.0

glue RSPM (R 4.0.5) 1.4.2

gower RSPM (R 4.0.3) 0.2.2

GPfit RSPM (R 4.0.3) 1.0.8

graphlayouts RSPM (R 4.0.2) 0.7.0

gridExtra RSPM (R 4.0.3) 2.3

gridtext RSPM (R 4.0.2) 0.1.1

gtable RSPM (R 4.0.3) 0.3.0

haven RSPM (R 4.0.2) 2.3.1

here RSPM (R 4.0.0) 0.1

Hmisc RSPM (R 4.0.2) 4.4.1

hms RSPM (R 4.0.0) 0.5.3

Hmsc RSPM (R 4.0.0) 3.0.6
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htmltools RSPM (R 4.0.1) 0.5.0
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ipred RSPM (R 4.0.3) 0.9.9
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iterators RSPM (R 4.0.0) 1.0.12

jpeg RSPM (R 4.0.3) 0.1.8.1

jsonlite RSPM (R 4.0.2) 1.7.1

kernlab RSPM (R 4.0.3) 0.9.29

KernSmooth CRAN (R 4.0.2) 2.23.17

kknn RSPM (R 4.0.0) 1.3.1

knitr RSPM (R 4.0.2) 1.3
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latex2exp RSPM (R 4.0.0) 0.4.0

lattice CRAN (R 4.0.2) 0.20.41

latticeExtra RSPM (R 4.0.3) 0.6.29

lava RSPM (R 4.0.2) 1.6.8

lhs RSPM (R 4.0.2) 1.1.1

life cycle RSPM (R 4.0.3) 0.2.0

listenv RSPM (R 4.0.3) 0.8.0

lme4 RSPM (R 4.0.2) 1.1.23
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magrittr RSPM (R 4.0.0) 1.5
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mcmc RSPM (R 4.0.3) 0.9.7

MCMCpack RSPM (R 4.0.2) 1.4.9

memoise RSPM (R 4.0.0) 1.1.0

meta RSPM (R 4.0.2) 4.15.1

metafor RSPM (R 4.0.3) 2.4.0

mgcv CRAN (R 4.0.2) 1.8.31

minqa RSPM (R 4.0.2) 1.2.4

mlr RSPM (R 4.0.2) 2.18.0

modeldata RSPM (R 4.0.2) 0.0.2

modelr RSPM (R 4.0.3) 0.1.8

modeltools RSPM (R 4.0.3) 0.2.23

multtest Bioconductor 2.46.0

munsell RSPM (R 4.0.3) 0.5.0

mvtnorm RSPM (R 4.0.3) 1.1.1

nlme CRAN (R 4.0.2) 3.1.148

nloptr RSPM (R 4.0.3) 1.2.2.2

nnet CRAN (R 4.0.2) 7.3.14

openxlsx RSPM (R 4.0.2) 4.2.2

optparse RSPM (R 4.0.0) 1.6.6

pander CRAN (R 4.0.2) 0.6.5

parallelMap RSPM (R 4.0.0) 1.5.0

ParamHelpers RSPM (R 4.0.3) 1.14

parsnip RSPM (R 4.0.2) 0.1.3

patchwork RSPM (R 4.0.2) 1.0.1

pbmcapply RSPM (R 4.0.3) 1.5.0

pdist RSPM (R 4.0.3) 1.2

permute RSPM (R 4.0.3) 0.9.5

phyloseq bioc_git2r (@7829e59a5052b2dafd1a34036d67e32e09fd76b0) 1.32.0

pillar RSPM (R 4.0.2) 1.4.6

pkgconfig RSPM (R 4.0.3) 2.0.3

plyr RSPM (R 4.0.2) 1.8.6

png RSPM (R 4.0.3) 0.1.7
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polyclip RSPM (R 4.0.3) 1.10.0

prabclus RSPM (R 4.0.3) 2.3.2

prettyunits RSPM (R 4.0.3) 1.1.1

pROC RSPM (R 4.0.2) 1.16.2

prodlim RSPM (R 4.0.2) 2019.11.13

progress RSPM (R 4.0.3) 1.2.2

pulsar RSPM (R 4.0.2) 0.3.7

purrr RSPM (R 4.0.5) 0.3.4

qs RSPM (R 4.0.2) 0.23.3

quantreg RSPM (R 4.0.2) 5.73

R6 RSPM (R 4.0.0) 2.4.1

ranger RSPM (R 4.0.2) 0.12.1

RANN RSPM (R 4.0.3) 2.6.1

RApiSerialize RSPM (R 4.0.0) 0.1.0

RColorBrewer RSPM (R 4.0.3) 1.1.2

Rcpp RSPM (R 4.0.2) 1.0.5

RcppParallel RSPM (R 4.0.3) 5.0.2

readr RSPM (R 4.0.2) 1.4.0

readxl RSPM (R 4.0.2) 1.3.1

recipes RSPM (R 4.0.2) 0.1.13

reprex RSPM (R 4.0.0) 0.3.0

reshape2 RSPM (R 4.0.2) 1.4.4

rhdf5 Bioconductor 2.34.0

rhdf5filters Bioconductor 1.2.1

Rhdf5lib Bioconductor 1.12.1

RhpcBLASctl RSPM (R 4.0.3) 0.20.137

rio RSPM (R 4.0.3) 0.5.16

rjson RSPM (R 4.0.3) 0.2.20

rlang RSPM (R 4.0.2) 0.4.8

rnaturalearth RSPM (R 4.0.0) 0.1.0

rnaturalearthdata RSPM (R 4.0.0) 0.1.0

robustbase RSPM (R 4.0.0) 0.93.6

ROSE RSPM (R 4.0.0) 0.0.3

rpart CRAN (R 4.0.2) 4.1.15

rprojroot RSPM (R 4.0.0) 1.3.2

rsample RSPM (R 4.0.3) 0.0.8

RSQLite RSPM (R 4.0.2) 2.2.1

rstatix RSPM (R 4.0.3) 0.6.0

rstudioapi RSPM (R 4.0.0) 0.11

rvest RSPM (R 4.0.3) 0.3.6

S4Vectors Bioconductor 0.28.1

scales RSPM (R 4.0.3) 1.1.1

sessioninfo CRAN (R 4.0.2) 1.2.2

sf RSPM (R 4.0.2) 0.9.6

shape RSPM (R 4.0.3) 1.4.5

sp RSPM (R 4.0.2) 1.4.4

spam RSPM (R 4.0.0) 2.5.1

SparseM RSPM (R 4.0.3) 1.78
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SpiecEasi git2r (https://github.com/zdk123/SpiecEasi@c463727

a51d0df34db0c670d3b170195bb3d4eba)

1.1.2

statmod RSPM (R 4.0.0) 1.4.34

storr RSPM (R 4.0.0) 1.2.1

stringfish RSPM (R 4.0.2) 0.14.2

stringi RSPM (R 4.0.3) 1.5.3

stringr RSPM (R 4.0.3) 1.4.0

survival CRAN (R 4.0.2) 3.1.12

themis RSPM (R 4.0.2) 0.1.2

tibble RSPM (R 4.0.2) 3.0.3

tidygraph RSPM (R 4.0.2) 1.2.0

tidymodels RSPM (R 4.0.2) 0.1.1

tidyr RSPM (R 4.0.2) 1.1.2

tidyselect RSPM (R 4.0.3) 1.1.0

tidyverse RSPM (R 4.0.3) 1.3.0

timeDate RSPM (R 4.0.3) 3043.102

truncnorm RSPM (R 4.0.3) 1.0.8

tune RSPM (R 4.0.2) 0.1.1

tweenr RSPM (R 4.0.2) 1.0.1

txtq RSPM (R 4.0.2) 0.2.3

unbalanced RSPM (R 4.0.0) 2

units RSPM (R 4.0.2) 0.6.7

vctrs CRAN (R 4.0.2) 0.3.6

vegan RSPM (R 4.0.0) 2.5.6

VGAM RSPM (R 4.0.0) 1.1.3

viridis RSPM (R 4.0.3) 0.5.1

viridisLite RSPM (R 4.0.3) 0.3.0

withr RSPM (R 4.0.2) 2.3.0

workflows RSPM (R 4.0.3) 0.2.1

writexl RSPM (R 4.0.2) 1.3.1

xfun RSPM (R 4.0.2) 0.18

xml2 RSPM (R 4.0.3) 1.3.2

XVector Bioconductor 0.30.0

yaml RSPM (R 4.0.3) 2.2.1

yardstick RSPM (R 4.0.3) 0.0.7

zip RSPM (R 4.0.3) 2.1.1

zlibbioc Bioconductor 1.36.0

multiqc https://multiqc.info/ 1.8

fastqc https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 0.11.9

ngmerge https://github.com/jsh58/NGmerge 0.3

grabseqs https://github.com/louiejtaylor/grabseqs 0.7

trimmomatic http://www.usadellab.org/cms/?page=trimmomatic 0.39

qiime2 https://qiime2.org/ 2020.8

snakemake https://snakemake.readthedocs.io/en/stable/ 7.18.1

grabseqs https://github.com/louiejtaylor/grabseqs 0.7

sra-tools https://github.com/ncbi/sra-tools 3.0.0

ITSx https://microbiology.se/software/itsx/ 1.1.3

BBTools https://jgi.doe.gov/data-and-tools/software-tools/bbtools/ 39.01
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Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Gianni Panagiotou

(gianni.panagiotou@leibniz-hki.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d 16S and ITS data were obtained from public databases and are available under the accession numbers listed in the Data S1.

d All original code has been deposited at https://github.com/bioinformatics-leibniz-hki/its-16s and is publicly available as of the

date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Sample selection
Included studies were retrieved by querying NCBI BioProject with the terms ‘bacteria’ and ‘fungi’ in any field. Only BioSamples with

both 16S rRNA and ITS amplicon sequencing data were considered for the concurrent analysis of both kingdoms. We also required

that 16S and ITS sequences were deposited under a unified BioSample ID to definitely link patterns in bacterial and fungal diversity.

This excluded some additional projects, as the 16S and ITS sequences were deposited under different BioSample IDs.We used both

the identifier and attributes of the BioSample, such as aliases and library names, to map fungal and bacterial read files to a sample

using a custom script. Samples were associated to an environment (aquatic, host, or soil) using manual curation of associated pub-

lications and BioSample attributes provided by the depositor. The three environments were further subdivided into 17 habitat groups

based on the body part and/or the ecoregion of the sampling location for host and other samples, respectively.65 Habitats with less

than five samples were pooled together.

Generation of genus-level abundance profiles
Genus-level abundance profiles were calculated using a custom nextflow pipeline.66 Briefly, reads were downloaded fromNCBI SRA

using grabseqs, except for the American Gut Project, which was downloaded from Qiita.67,68 Paired-end reads were merged using

NGmerge.69 Quality Control (QC) and adapter removal was performed using trimmomatic with a minimum Phread quality of 20 and a

minimal read length of 100.70 Quality was assessed using FastQC andMultiQC.71 Subsequent stepswere performed usingQIIME2.72

Reads were dereplicated following closed-reference OTU picking for both kingdoms separately using VSEARCHwith a 97% identity

threshold.73 For taxonomic annotation, SILVA 132 97% consensus and UNITE 8.2 dynamic databases were used for bacteria and

fungi, respectively.74,75 As detection of archaea was highly variable across the 16S datasets, any counts assigned to archaea

were removed prior to downstream analyses. Relatedly, co-amplifying plant and non-fungal microbial eukaryote sequences were

excluded from analysis as we used a version of the UNITE database that only included fungal sequences. Following quality control,

a total of 1,580 samples were selected for downstream analyses.
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Discovery of sample rRNA amplified region
Multiple rRNA regions were used to characterize microbial diversity as the study dataset is composed of many sequencing projects.

When available, the specific rRNA region amplified was obtained from deposited metadata or linked publication. For BioProjects

where this information was not available, the following was performed. As the SILVA database (v138.1) contains full length bacterial

rRNA sequence, the hypervariable regions (e.g., V1-V3, V4-V5) from each taxon was extracted using the in silico pcr tool (https://

github.com/egonozer/in_silico_pcr) with primers described in.76Amplicon sequence data from each project was then aligned to

each variable region using BWA-MEM v.0.7 and contig coverage quantified using BBTools v.39.01. The 16S variable region with

the highest percent coverage was taken as the region amplified in the study. For the ITS amplicon data, ITSx 1.1.1377 was used

to extract the ITS1 and/or ITS2 consensus from sequence reads. The BioProject primers identified through this analysis, as well

as those retrieved from association publications is listed in Data S1.

Abundance correlation between varying rRNA amplicons
To calculate the correlation in genus abundances between the differing rRNA regions amplified, genera that were detected in all three

environments were considered and samples aggregated into whether they included sequence from the V1-V4 regions or V4-V5 re-

gions for bacteria and ITS1 or ITS2 for fungi. For each rRNA category, Pearson’s correlation coefficients were calculated for genus

abundance in each environment. The similarity between the correlation matrices (V1-V4 and V4-V5 for bacteria and ITS1 and ITS2 for

fungi) was then calculated by transforming the upper triangle of each correlation matrix into a vector and calculating the correlation

coefficient between the two.

Decontamination of low biomass projects
Low biomass samples are susceptible to amplification of low-level contaminating sequences in extraction kits and other reagents. To

control for this, low biomass projects, including all aquatic project and low biomass host habitats like the long were decontaminated

using the decontam R package.78 The majority of low biomass projects contained blanks or negative controls and were decontami-

nated using the ‘‘prevalence’’ method of decontam. In this method, OTUs observed in the non-sample control samples are labeled as

contaminants and removed from the abundance table. One low biomass project did not have sequencing controls but provided us

with the input DNA concentrations used for library preparation, as determined by Qubit (Invitrogen). This allowed the samples from

this project to be decontamined using the ‘‘frequency’’ mode of decontam. In this mode, contaminating OTUs are identified and

removed from downstream analyses as their abundance inversely correlates with the input DNA concentration, rather than indepen-

dent of it. The mode of deconam used for each project is indicated in Figure 2.

Genome features of generalists and specialists
As amplicon sequence data is based onmaker genes, deposited genomeswere used to characterize functional traits associatedwith

the genomes of generalists and specialists. The generalists and specialist genera were queried in NCBI RefSeq. Of the resulting

genome list, all genomes or up to 60 randomly selected genomes if more were available were selected for each genus. This resulted

in genomes for 2,328 bacterial generalists, 117 fungal generalists, 471 bacterial specialists, and 5 fungal specialists. Genome size

and number of coding regions were obtained from the NCBI metadata. For the calculation of the number and type of biosynthetic

gene clusters in each genome, AntiSMASH v6.1.1 was used.79 Antimicrobial and stress resistance genes were predicted in bacterial

genomes using AMRFinderPlus.80 Counts were divided by genome length for normalization.

QUANTIFICATION AND STATISTICAL ANALYSIS

Workflow and statistical analysis
Analyses were performed using a custom drake pipeline81 built using the programming language R 4.0.2. Briefly, abundances ob-

tained from OTU profiling were total-sum-scaled (TSS) and pooled at genus rank. All tools were used with default parameters if

not explicitly specified.

Diversity
Alpha diversity was estimated using Shannon and Chao1 metrics with the phyloseq and vegan packages.82,83 To quantify the contri-

butions of a bacterial community profile with the fungal one and vice versa, we used linear and unsupervised Canonical Correlation

Analysis, as implemented in the function CCorA of the vegan R package.82 P-values were obtained using blocked permutations to

control for the habitat and to reduce assumptions of the test. Supervised constrained ordination was performed using stepwise Dis-

tance-based Redundancy Analysis (dbRDA) adapted from.84 This analysis shows linear relationships between bacterial dissimilarities

and abundances of selected explanatory fungal genera (and vice versa). An optimal subset of up to 50 explanatory genera of the other

kingdom was computed using a stepwise feedforward approach, as implemented in the ordistep function of the vegan R package.82

Co-abundance networks
SparCC, as implemented in FastSpar, was used to assess correlation between taxa pairs for each environment separately.85,86

Both kingdoms were pooled together, allowing for the identification of interkingdom correlations. Only genera found in all
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three environments were considered for pairwise correlation. Node topology metrics were calculated using the R package

igraph.

Generalists and specialists
Genera were defined as generalists if they were found in at least 40% of samples in at least one habitat from each environment (host,

soil, aquatic) with a relative abundance of at least 0.01%. Conversely, genera were defined as specialists if they were found in at least

40% of samples in one habitat and less than 5% of samples in all other habitats using the same abundance threshold as for gener-

alists. Levins’ niche breadth index was calculated as implemented in the R package MicroNiche.87 Social niche breadth (SNB) was

calculated as in vonMeijenfeldt et al., Nature Ecology and Evolution (2023) using the data from theMGNIFY database analyzed in this

study.
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