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ABSTRACT The opportunistic pathogen Candida glabrata shows a concerning in-
crease in drug resistance. Here, we present the analysis of two serial bloodstream
isolates, obtained 12 days apart. Both isolates show pan-azole resistance and echino-
candin resistance was acquired during the sampling interval. Genome sequencing
identified nine nonsynonymous SNVs between the strains, including a S663P substi-
tution in FKS2 and previously undescribed SNVs in MDE1 and FPR1, offering insight
into how C. glabrata acquires drug resistance and adapts to a human host.
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Candida glabrata is a commensal of the human microflora but is also a significant
cause of both superficial and invasive fungal infections. C. glabrata is the second

most common causative agent of invasive candidiasis, accounting for 27% of Candida
bloodstream infections in the United States (1). Despite its name, C. glabrata is more
closely related to the nonpathogenic model organism Saccharomyces cerevisiae than
other Candida family members. C. glabrata is also unique among other Candida species
for its haploid genome that forces asexual reproduction. Perhaps as a result, C. glabrata
shows high levels of genomic plasticity and chromosomal rearrangements as a means
to generate genetic diversity are common (2–4).

C. glabrata possesses MIC90 values five to seven dilution steps higher than C.
albicans for azole class antifungals, independent of acquired resistance determinants
(5). Beyond that, it can also develop bona fide resistance against azoles, which is often
mediated by the upregulation of efflux pumps such as CDR1 and SNQ2 and a corre-
sponding gain-of-function mutation in PDR1 (4). In addition to its reduced azole
susceptibility, the echinocandin resistance rate for C. glabrata in the United States more
than doubled in the period of 2001 to 2010, going from 4.9 to 12.3% (6). Echinocandin
resistance in C. glabrata is frequently the result of mutations in the “hot spot” region of
FKS2, one of the catalytic subunits of the �-1,3-glucan synthase target complex (7).
Importantly, FKS mutations correlate not only with higher in vitro MICs but also with
treatment failure and increased mortality in vivo (6). Here, we present the analysis of
two serial C. glabrata bloodstream isolates obtained at 12-day intervals. Both strains
show pan-azole resistance and echinocandin resistance evolved during the sampling
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interval, presumably as a result of the FKS2 S663P mutation identified through whole-
genome sequencing in the second isolate. Our results highlight the ability of C. glabrata
to rapidly acquire antifungal resistance, underscoring the increasing problem of resis-
tant infections, and provide a global view of the genetic determinants necessary for C.
glabrata to survive and persist in the bloodstream.

Patient case report and the development of echinocandin resistance in serial C.
glabrata isolates. Candida glabrata strains NRZ-2016-057 and NRZ-2016-058 are serial
isolates from the bloodstream of an AML patient obtained at a 12-day interval. The
patient was treated with voriconazole prophylactically from 8 December 2015 to 13
February 2016. During this period, she also received a short course of anidulafungin
from 15 to 21 January. On 13 February 2016 the patient was switched from azole to
echinocandin therapy and received 70 mg caspofungin on the initial day of treatment
and then 50 mg on subsequent days from 14 to 20 February. On 20 February, antifungal
therapy was switched to 100 mg of anidulafungin, which was maintained until patient
death on 28 February 2016. To help manage the source of infection, the central venous
catheter was removed on 14 February 2016 and all other catheters replaced. NRZ-2016-
057 was isolated from a blood culture on 13 February 2016 while the patient was on
prophylactic voriconazole therapy, and NRZ-2016-058 was obtained on 25 February
2016 from a follow-up blood culture after the patient had been switched to echino-
candin therapy (Fig. 1). The relatedness of the isolates was confirmed by multilocus
sequence typing (MLST) as described previously (8) and using the allele definitions and
MLST profiles described by PubMLST (https://pubmlst.org/cglabrata/) (Table 1). NRZ-
2016-057 and NRZ-2016-058 were deposited in and are publicly available via the Jena
Microbial Resource Collection under numbers JMRC:NRZ:0308 and JMRC:NRZ:0309,
respectively.

The antifungal susceptibility of NRZ-2016-057 and NRZ-2016-058 was determined
according to the EUCAST broth dilution method. Briefly, strains were precultured on
yeast extract-peptone-dextrose (YPD) plates at 35°C, and then the susceptibility to
amphotericin B (European Pharmacopoeia, Strasbourg, France), isavuconazole (Basilea
Pharmaceutica International, Ltd., Basel, Switzerland), itraconazole (Janssen-Cilag
GmbH, Neuss, Germany), posaconazole (MSD, Rahway, NJ), voriconazole (Pfizer, Inc.,
Peapack, NJ), fluconazole (Pfizer), anidulafungin (Pfizer), and caspofungin (MSD) was
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FIG 1 Schematic overview of the patient case report, including antifungal history and isolation from the
bloodstream of NRZ-2016-057 and NRZ-2016-058.

TABLE 1 Antifungal susceptibility of C. glabrata strains NRZ-2016-057 and NRZ-2016-058

Strain
Strain
type

MIC (mg/liter)a
Time elapsed
(days)AMB POS VRC ITC FLC ISA AFG CAS

NRZ-2016-057 3 0.25 �8 �8 �8 �64 �8 0.03 0.5
NRZ-2016-058 3 0.5 �8 �8 �8 �64 �8 4 �8 12
aAMB, amphotericin B; POS, posaconazole; VRC, voriconazole; ITC, itraconazole; FLC, fluconazole; ISA,
isavuconazole; AFG, anidulafungin; CAS, caspofungin.
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assessed. MICs were determined using a Nepheloskan Ascent type 750 (Labsystems,
Helsinki, Finland) after 24 h of incubation at 35°C and are defined as 50% reductions in
growth compared to drug-free wells. Two reference strains, Aspergillus fumigatus ATCC
204305 and Candida parapsilosis ATCC 22019 were included as quality control in each
set of tests. NRZ-2016-057 showed elevated MICs to all azoles examined but was still
susceptible to amphotericin B and echinocandin-class drugs (Table 1). NRZ-2016-058
acquired resistance to anidulafungin and caspofungin during the sampling interval, in
addition to its previously obtained azole resistance, but it remained susceptible to
amphotericin B.

Whole-genome sequencing of NRZ-2016-057 and NRZ-2016-058. To determine
the genetic changes that accompanied the development of echinocandin resistance, as
well as any potential adaptations to the host environment, whole-genome sequencing
was performed on NRZ-2016-057 and NRZ-2016-058 using 2x125bp Illumina paired-
end sequencing by GATC Biotech (Constance, Germany). Raw genome sequence files
(fastq) were uploaded to the NCBI Sequence Read Archive (SRA) and are publicly
available under BioProject PRJNA483064.

Raw Illumina reads were processed by Trimmomatic (v0.32) (9) using specific
parameters (leading:10 trailing:10 slidingwindow:4:15 minlen:50), ensuring the removal
of adapter sequences and reads of low quality. After trimming, the read quality was
checked with FastQC (v0.11.5) (10). Reads were aligned to the Candida glabrata
reference genome CBS 138 (www.candidagenome.org) applying Novoalign (V3.07.01)
in paired-end mode (Novocraft). From 4.4 and 5.5 million paired reads, we obtained 50-
and 110-fold coverages for NRZ-2016-057 and NRZ-2016-058, respectively, covering
99% of the genome. Genetic variants, including single nucleotide variants (SNVs) and
insertions and deletions (indels), were searched by SAMtools (v1.2; Samtools mpileup
– uf) in conjunction with BCFtools using the multiallelic calling model (bcftools call –mv)
(11). A minimum of five mapped reads for all reported variants was required. Processing
and filtering of vcf files, allowing for the detection of amino acid substitutions in protein
sequences, was carried out with the R package VariantAnnotation from Bioconductor
(12). Compared to CBS 138, we identified 26,235 synonymous SNVs and 11,471 non-
synonymous SNVs in NRZ-2016-057 (Table 2). This strain also showed 4,168 indels, 171
of which were in coding regions. We detected a 10.8-kb deletion on chromosome A
of NRZ-2016-057, containing the uncharacterized open reading frame (ORF)
CAGL0A02255g, as well as deletions of similar size on chromosomes H, J, and K, which
did not contain any annotated ORFs (Fig. 2). These results indicate that NRZ-2016-057
displays a relatively high degree of genetic diversity compared to CBS 138, an obser-
vation in line with previous studies showing high genetic diversity between C. glabrata
strains (2, 13). A complete list of genetic changes detected in NRZ-2016-057 compared
to CBS 138 can be found in Data Set S1 in the supplemental material.

C. glabrata contains a large number of adhesins and the ability of the organism to
adhere to host cells and other structures is a key virulence determinant for the
organism (reviewed in reference 14) and, in general, the number of adhesins correlates
with pathogenicity within the Nakaseomyces clade (15). Interestingly, we observed
large spikes in read depth that predominantly corresponded to the genomic location
of annotated adhesin genes in CBS 138, suggesting increases in the copy number of
adhesin genes (Fig. 2). To confirm spikes in read coverage were not PCR duplicates,
duplicates were marked and removed using Picard (v1.134; remove_duplicates�true
assume_sorted�true).

Genomic comparison between NRZ-2016-057 and NRZ-2016-058. Genomic anal-
ysis of NRZ-2016-058 compared to NRZ-2016-057 with reference to CBS 138 identified

TABLE 2 Whole-genome comparison of CBS 138 and NRZ-2016-057

Parameter Synonymous SNVs Nonsynonymous SNVs Indels Indels in CDS

Total no. 26,235 11,471 4,168 171
Percentage vs CBS 138 0.21 0.09 0.03 0.003
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two synonymous and nine nonsynonymous SNVs between the putative parent and
offspring strain (Table 3). No indels were observed in NRZ-2016-058 that were not also
present in the parent strain. In agreement with the development of phenotypic
echinocandin resistance, we identified a T1987C (S663P) substitution in the FKS2 coding
sequence of NRZ-2016-058, a mutation previously shown to be sufficient to induce
echinocandin resistance in C. glabrata (16). However, we also detected a nonsynony-
mous SNV in MDE1, a gene that is downregulated in response to caspofungin in S.
cerevisiae and results in enhanced resistance to caspofungin upon its deletion in this
organism, suggesting that there could potentially be additional mechanisms contrib-
uting to the echinocandin resistance observed in NRZ-2016-058 (17, 18). Another
previously undescribed nonsynonymous SNV between the two isolates is in FPR1, a TOR
signaling member whose expression is upregulated in biofilm versus planktonic growth
(19). The S. cerevisiae ortholog of FPR1 binds to rapamycin and FK506, both of which
show antifungal activity. We also identified nonsynonymous SNVs in genes associated
with metabolism and nutrient acquisition and the core stress response, including
CAGL0M09999g and HXT4/6/7. The exact function of the genomic changes observed
between NRZ-2016-057 and NRZ-2016-058 remains undefined; however, they presum-
ably and collectively play a role in adapting the fungus to the host environment and the
unique environmental stresses and antifungal therapy encountered there. It is also
possible that these genetic changes conferred early or small increases in echinocandin
resistance before the FKS2 S633P mutation was acquired.

Interestingly, aside from the FKS2 mutation, none of the changes observed between
NRZ-2016-057 and NRZ-2016-058 overlapped those seen in another study following the
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FIG 2 Read depth of NRZ-2016-057 across each chromosome when aligned to the CBS 138 genome.
Highlighted regions indicate where spikes in read depth colocalize with the genomic location of putative
or confirmed adhesin genes, suggesting increases in copy number.
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genomics changes that accompanied the development of echinocandin resistance in a
different set of C. glabrata isolates (16), highlighting the diverse mechanisms by which
this organism can adapt to the selective pressures applied by the host and antifungal
therapy. Moreover, despite the fact that the S633P mutation in FKS2 comes at a fitness
cost to the organism in the absence of echinocandins (16, 20), we did not observe any
significant growth differences between CBS 138, NRZ-2016-057, and NRZ-2016-058 in
RPMI or YPD medium (data not shown), suggesting that one or more of the unique
SNVs identified in NRZ-2016-058 could serve as a compensatory change for the reduced
fitness resulting from the FKS2 mutation, potentially by upregulating FKS gene expres-
sion to compensate for the reduced catalytic potential of the mutated 1,3-�-D-glucan
synthase complex, as has been shown for other C. glabrata isolates containing FKS hot
spot mutations (20).

Finally, though NRZ-2016-057 and NRZ-2016-058 were resistant to all azoles tested,
they do not possess any of the previously described mutations associated with azole
resistance in C. glabrata, which are most commonly medicated via gain of function
mutations in PDR1 (21). However, we did identify a novel R761M polymorphism in this
gene not previously described among the sequences present in the GenBank nr
collection, in addition to V91I, L98S, and D243N polymorphisms which have been
previously described in both azole-susceptible and azole-resistant isolates (22). Finally,
neither strain showed any genetic changes in the mismatch repair complex gene MSH2
that has also been shown to drive multidrug resistance in C. glabrata (23). The
not-yet-deciphered mechanism by which azole resistance is mediated in NRZ-2016-057
and NRZ-2016-058 is an intriguing question warranting further investigation.
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